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Abstract 

Background:  Besides binding to proteins, the most recent advances in pharmacogenomics indicate drugs can regu-
late the expression of non-coding RNAs (ncRNAs). The polypharmacological feature in drugs enables us to find new 
uses for existing drugs (namely drug repositioning). However, current computational methods for drug repositioning 
mainly consider proteins as drug targets. Meanwhile, these methods identify only statistical relationships between 
drugs and diseases. They provide little information about how drug-disease associations are formed at the molecular 
target level.

Methods:  Herein, we first comprehensively collect proteins and two categories of ncRNAs as drug targets from pub-
lic databases to construct drug–target interactions. Experimentally confirmed drug-disease associations are down-
loaded from an established database. A canonical correlation analysis (CCA) based method is then applied to the two 
datasets to extract correlated sets of targets and diseases. The correlated sets are regarded as canonical components, 
and they are used to investigate drug’s mechanism of actions. We finally develop a strategy to predict novel drug-
disease associations for drug repositioning by combining all the extracted correlated sets.

Results:  We receive 400 canonical components which correlate targets with diseases in our study. We select 4 
components for analysis and find some top-ranking diseases in an extracted set might be treated by drugs interfacing 
with the top-ranking targets in the same set. Experimental results from 10-fold cross-validations show integrating dif-
ferent categories of target information results in better prediction performance than only using proteins or ncRNAs as 
targets. When compared with 3 state-of-the-art approaches, our method receives the highest AUC value 0.8576. We 
use our method to predict new indications for 789 drugs and confirm 24 predictions in the top 1 predictions.

Conclusions:  To the best of our knowledge, this is the first computational effort which combines both proteins and 
ncRNAs as drug targets for drug repositioning. Our study provides a biologically relevant interpretation regarding the 
forming of drug-disease associations, which is useful for guiding future biomedical tests.
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Background
Over 100  years ago, the Nobel laureate Paul Ehrlich 
established his revolutionary ‘magic bullet’ concept, 
which has successfully inspired generations of chem-
ists and pharmacologists to create target-specific drugs 
for disease treatment [1]. This declared paradigm has 
become a pragmatic criterion in drug discovery for the 
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past decades. However, the interpretation of the magic 
bullet as a drug which acts through a single crucial tar-
get in an exclusive and highly specific way has been chal-
lenged, because increasing studies demonstrate drugs 
usually have multiple physiological targets rather than 
one target [2–4].

The polypharmacological feature in drugs enables us to 
find new indications (also known as drug repositioning 
[5]) for existing drugs. For instance, a study conducted 
by Skrott et al. [6] found that the metabolite of disulfiram 
binds to a new target NPL4, which is responsible for anti-
cancer effects. Therefore, the old alcohol-aversion drug 
can be repurposed for tumour treatment. Meanwhile, 
unintended ‘off-targets’ may cause adverse drug reactions 
(ADR) [7], which would limit the use of drugs. It is there-
fore necessary to discover the real targets implicated in 
drug indications.

There are 4 potential types of macromolecules in bio-
logical systems with which we can interfere using small-
molecule drugs: proteins, polysaccharides, lipids and 
nucleic acids [8]. Previous research efforts were mainly 
made on the first type of molecular targets [9–12]. The 
most recent studies in pharmacogenomics have discov-
ered that drugs can regulate the expression levels of two 
categories of ncRNAs, namely miRNAs and lncRNAs. 
For example, Smith et al. [13] revealed that the expression 
levels of 44 miRNAs are repressed during glucocorticoid-
induced apoptosis. Guo et al. [14] identified aspirin can 
activate the expression of a lncRNA named OLA1P2 in 
human colorectal cancer. Given the intriguing fact that 
ncRNAs play significant roles in disease development 
[15–17], targeting these ncRNAs with small-molecule 
drugs offers another new and promising type of therapy 
for human diseases [18–23].

As traditional biomedical experiments are expensive 
and time-consuming, computational approaches provide 
an alternative tool for drug repositioning. For example, 
Chen et al. [24] exploited multiple heterogeneous data to 
integrate drug-disease network and drug–target network 
into one coherent model, and applied cross-network 
embedding to predict drug-disease associations for drug 
repositioning. A comprehensive and detailed survey on 
computational drug repositioning is available at Review 
[25]. Note that previous computational approaches for 
drug repositioning seldom take integrated target infor-
mation into consideration. They usually exploit proteins 
as drug targets. We argue that integrating different types 
of targets would provide a better and more comprehen-
sive understanding of drug’s MoA. Further, these meth-
ods discover only statistical associations between drugs 
and diseases at data level. They seldom investigate how 
drug-disease associations are formed at the molecular 
target level.

In this paper, we first comprehensively select drug 
targets from proteins, miRNAs and lncRNAs to con-
struct drug–target interactions. Therapeutically verified 
drug indications are downloaded to form drug-disease 
associations. Then, we apply a CCA-based method to 
extract correlated sets of targets and diseases. The cor-
related targets and diseases provide explanations of the 
forming of drug-disease associations. We finally predict 
novel drug-disease associations for drug repositioning by 
combining the correlated sets. Comprehensive experi-
ments demonstrate using integrated target information 
not only improves prediction performance, but also pro-
vides a more extensive view of drug’s MoA. Case studies 
suggest some top predictions are confirmed by existing 
databases. When compared with other methods using 
the benchmark datasets in our study, our approach shows 
improvements in terms of AUC value.

Results
Preliminary analysis of the datasets
In total, we receive 1190 drugs with both target and indi-
cation information. For the 1190 drugs, we obtain 5331 
drug–target interactions containing 1668 targets and 
5869 drug-disease associations including 1111 diseases. 
An overview of the two datasets is available at Tables 1 
and 2, respectively.

Table 1  Statistics of the drug–target interactions used in our 
manuscript

Name Statistics

# drugs 1190

# total targets (including proteins, miRNAs and lncRNAs) 1668

# proteins 1167

# miRNAs 348

# lncRNAs 153

# total drug–target interactions 5331

# drug–protein interactions 4337

# drug–miRNA interactions 825

# drug–lncRNA interactions 169

Average number of targets for each drug 4.5

Table 2  Statistics of the drug-disease associations used in our 
manuscript

Name Statistics

# drugs 1190

# diseases 1111

# drug-disease associations 5869

Average number of associated diseases for each drug 4.9
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We further use a boxplot (Additional file 1) to describe 
the distribution of numbers of targets and indications of 
the 1190 drugs. We discover that there are 885 (74.4%) 
drugs whose target numbers are less than 4.5 (the aver-
age value) and 887 (80.0%) drugs whose indication num-
bers are less than 4.9 (the average value). Meanwhile, as 
a category of newly discovered targets, the number of 
experimentally supported drug–ncRNA interactions are 
far less than that of drug–protein interactions. We can 
conclude from the analysis that our knowledge about 
drug–target interactions and drug-disease associations is 
not complete.

Performance evaluation
In this study, we collect both proteins and ncRNAs as 
drug targets. We therefore separately use proteins, ncR-
NAs and integrated targets to conduct 10-fold cross-
validation experiments. We use average AUC values for 
performance evaluation. The results are summarized in 
Table  3. We discover that integrating both proteins and 
ncRNAs results in better prediction performance than 
only using proteins or ncRNAs as targets. We also find 
that imposing sparsity constraint on CCA can improve 
prediction performance. Note almost all elements in the 
weight vectors in ordinary CCA (OCCA) are non-zero, 
indicating that OCCA cannot select a small number of 
features as informative drug targets and indications.

Effects of parameters on cross‑validation experiments
There are three parameters (c1, c2 and k) in our method. 
The parameters c1 and c2 are to control the sparsity. The 
parameter k is the number of canonical components. For 
simplicity, we choose the same value for c1 and c2. We 
comprehensively set the values of c1 and c2 in the range of 

[0.1, 0.9], and the value of k in the range of [60, 500] when 
conducting 10-fold cross validations. We list the average 
AUC values in Table 4. We find the best inference perfor-
mance is achieved when c1 = c2 = 0.1, and k = 400.

Investigating drug’s MoA at the molecular target level
Drugs exert their therapeutic effects through modulat-
ing their biological targets, and in turn promote healthy 
functioning of our metabolic system. As a drug usually 
has multiple targets, detecting the real target(s) impli-
cated in a disease is critical for understanding drug’s 
MoA and for further drug repositioning.

We obtain 400 canonical components (Additional 
file 2) which correlate targets with diseases. We use four 
components (#1, #3, #6 and #7) as examples to investi-
gate the biological meaning of the extracted sets of tar-
gets and diseases. We select the top targets and diseases 
in each component for analysis.

In component #1, there are 34 targets and 23 diseases 
with positive weight. We find from the database Dis-
GeNET [26] that 4 high-ranking target proteins, Inter-
leukin-1 beta (3rd), Caspase-1 (3rd), Caspase-3 (3rd) and 
Matrix metalloproteinase-9 (3rd), are associated with the 
top disease Periodontitis (1st). Two top-scoring targets, 
Interleukin-1 beta (3rd) and Matrix metalloproteinase-9 
(3rd), are related with one top-scoring disease Cholera 
(4th). The target Caspase-3 (3rd) is associated with the 
disease Chlamydia trachomatis infection of genital struc-
ture (5th).

Similar findings are discovered in component #3, #6 
and #7. We list the confirmed top target-disease asso-
ciations in the three components in Additional file  3, 4 
and 5, respectively. Besides proteins, ncRNAs are found 
to be associated with diseases. For example, we discover 

Table 3  Average AUC values received from the CCA methods based on 10-fold cross-validations

The bold value indicated the highest one

SCCA (proteins + ncRNAs) SCCA (ncRNAs) SCCA (proteins) OCCA (proteins + ncRNAs) OCCA (ncRNAs) OCCA (proteins)

AUC value 0.8576 0.7391 0.8537 0.8107 0.7283 0.8106

Table 4  Average AUC values received based on 10-fold cross-validations by parameter tuning

The bold value indicated the highest one

k = 60 80 100 200 300 400 500

c1 = c2 = 0.1 0.8146 0.8244 0.8293 0.8463 0.8542 0.8576 0.8575

0.3 0.8124 0.8124 0.8107 0.8027 0.8012 0.8014 0.8003

0.5 0.8146 0.8099 0.8026 0.7753 0.7717 0.7686 0.7649

0.7 0.8160 0.8107 0.8043 0.7752 0.7702 0.7659 0.7645

0.9 0.8160 0.8106 0.8042 0.7751 0.7702 0.7659 0.7645
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in component #3 the top-ranking miRNA (miR-135b) 
is related with malignant neoplasm of thyroid (4th), 
malignant neoplasm of lung (6th) and breast carcinoma 
(7th), and the top-ranking miRNA (miR-520h) is associ-
ated with malignant neoplasm of lung (6th) and breast 
carcinoma (7th). These relationships are confirmed by 
the database HMDD [15]. In component #7, a lncRNA 
UCA1 (8th) is found to be related with Leukemia, Mye-
loid, Chronic-Phase (3rd), which is verified by the data-
base LncRNADisease [16]. Based on these findings, we 
presume drugs may act on the top-ranking targets in one 
canonical component to treat the top-ranking diseases in 
the same component.

Comparison with other methods
As mentioned before, this is the first computational effort 
using integrated targets for drug repositioning. Previous 
computational approaches for drug repositioning were 
developed based on different data features they analysed. 
We therefore choose 3 other methods which can take our 
datasets as inputs for comparison. The 3 baseline meth-
ods are as follows:

•	 DBSI [27]: a collaborative-filtering-based method 
using chemical similarity for drug–target interaction 
prediction.

•	 SDTNBI [28]: an integrated tool for large-scale 
drug–target interaction prediction using chemical 
substructures.

•	 MLKNN [29]: a multi-label k-nearest neighbour 
method for drug side effect prediction.

To make fair comparison, we apply the 3 methods to 
our datasets and use 10-fold cross-validations for pre-
diction performance comparison. For the method DBSI, 
we calculate drug–drug similarity according to Jaccard 
score based on their target information. This strategy 
of similarity calculation has been applied in other stud-
ies [30, 31]. The received AUC values for these methods 

are shown in Table  5. We perform Wilcoxon rank sum 
tests between SCCA and the other 3 methods based on 
the AUC values. The calculated p values are available 
at Table  6. The experimental results demonstrate our 
approach SCCA performs best in the 4 methods. Note 
that the other 3 methods cannot provide clues for bio-
logical interpretation.

New indication prediction for existing drugs
After confirming the prediction ability, we further apply 
our method to those drugs, which are not in the bench-
mark datasets but whose target information is available, 
for their new indication predictions. There are 789 drugs 
of such kind. All known information, including drug–
target interactions and drug-disease associations, in our 
gold-standard datasets is used for training. The potential 
indications are prioritized based on the prediction scores 
in descending order according to the method SCCA.

We list the top 50 predicted results of the 789 drugs in 
Additional file  6 for future screenings. We further vali-
date the top k (k = 5, 10, 20, 30 and 50) predictions by 
checking the public database CTD [32], a knowledgebase 
that houses information of chemicals, genes, phenotypes, 
diseases and exposures to advance understanding about 
human health. As this database contains both inferred 
and curated records, we only select curated drug-disease 
associations for prediction confirmation. The numbers of 
confirmed drug indications in the top k predictions are 
illustrated in Fig. 1. Because of space limitation, we only 
report the top 1 drug indication predictions supported by 
CTD in Table  7. More detailed information of the veri-
fied drug-disease associations in the top 50 predictions 
is available at Additional file 7. The excellent results indi-
cate our method can be applied in real situations.

Discussion
Uncovering drug’s MoA is of great importance for drug 
repositioning. In  vivo and in  vitro experiments are use-
ful but expensive tools to address the problem. Our 

Table 5  Comparison of average AUC values with existing methods based on 10-fold cross-validations

The bold value indicated the highest one

SCCA​ DBSI SDTNBI MLKNN

AUC value 0.8576 ± 0.0005 0.8413 ± 0.0022 0.8395 ± 0.0010 0.7945 ± 0.0002

Table 6  The p-values received from Wilcoxon rank sum tests

DBSI SDTNBI MLKNN

p value between SCCA and another method based on AUC values 1.6305E−04 1.7168E−04 1.6973E−04



Page 5 of 9Chen et al. BMC Medical Genomics           (2022) 15:48 	

CCA-based computational method provides an alter-
native to revealing the targets which are implicated in 
drug indications, and results suggest the extracted sets 
of targets and diseases are biologically meaningful. Com-
pared with previous studies, we integrate both proteins 

and ncRNAs as drug targets. Experiments further dem-
onstrate using integrated targets improves prediction 
performance.

Even though, our proposed method has been shown to 
be useful in drug repositioning. Some limitations in this 
study need to be pointed out. First, our method depends 
heavily on known drug–target interactions and drug-
disease associations. As we know, many drug targets 
(especially drug–ncRNA interactions) and drug indica-
tions have not been discovered. The incompleteness of 
data would result in biased prediction results. We expect 
combining more experimentally confirmed drug–target 
interactions and drug-disease associations would provide 
more reliable predictions. Meanwhile, there are 3 param-
eters in our method. Selecting appropriate values for the 
3 parameters to receive optimal results is a challenging 
task. Third, the numbers of extracted components are 
determined by the parameter k (see Eq. 4) in our method, 
and different numbers of extracted components would 
influence our interpretation of drug’s MoA.

More recently, a growing number of studies [24, 33–
43]are exploiting both features from drugs and diseases 
for drug repositioning. Integrating these features may 
provide more reliable prediction results. Another trend 

Fig. 1  The numbers of validated indications by CTD in the top k 
predictions for the 789 drugs

Table 7  The confirmed results in the top 1 drug indication predictions by CTD

Drug name Disease name Ranking in the prediction list Evidence

Troglitazone Hypertriglyceridemia Top 1 CTD

Methysergide Migraine disorders Top 1 CTD

Ropivacaine Pruritus Top 1 CTD

Tenofovir disoproxil HIV infections Top 1 CTD

Remoxipride Schizophrenia Top 1 CTD

Rosiglitazone Hypercholesterolemia Top 1 CTD

Cerivastatin Hypercholesterolemia Top 1 CTD

Meperidine Pain Top 1 CTD

Dronabinol Obesity Top 1 CTD

Phenindione Thromboembolism Top 1 CTD

Amodiaquine Malaria, falciparum Top 1 CTD

Alfentanil Pain Top 1 CTD

Risedronic acid Osteoporosis, postmenopausal Top 1 CTD

Levobupivacaine Pruritus Top 1 CTD

Ketamine Pain Top 1 CTD

Sulfadoxine Malaria, falciparum Top 1 CTD

Methotrimeprazine Schizophrenia Top 1 CTD

Acenocoumarol Thromboembolism Top 1 CTD

Diamorphine Pain Top 1 CTD

Pimavanserin Schizophrenia Top 1 CTD

Ciprofibrate Hypertriglyceridemia Top 1 CTD

Vitamin d Hypoparathyroidism Top 1 CTD

Elagolix Endometriosis Top 1 CTD

mg132 Multiple myeloma Top 1 CTD
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in drug repositioning is drug combinations [44–46] (see 
Review [47] for more details), which can result in low 
adverse side effects and high treatment efficacy com-
pared to single drug administration. We believe these 
efforts offer help with drug discovery and disease treat-
ment from different perspectives.

Conclusions
In this study, we apply a CCA-based method to extract 
correlated sets of targets and diseases, and the corre-
lated targets and diseases provide clues for explaining 
drug’s MoA for drug repositioning. We further pro-
pose a prediction scheme for drug repositioning based 
on the extracted correlated sets. Experimental results 
of cross-validations indicate that integrating different 
categories of targets and imposing sparsity constraint 
on CCA improve prediction performance. Case stud-
ies demonstrate that some of the top predictions by 
our method are supported by literature. Moreover, our 
method shows improvement in prediction accuracy 
when compared with other approaches. We expect that 
our study offers a useful tool for drug repositioning.

Methods
Data preparation
We collect two datasets, namely drug–target interac-
tions and drug-disease associations, from public data-
bases for our study. The two datasets are regarded as 
gold-standard data. We use the benchmark datasets to 
evaluate the performance of our method. We also use 
the two datasets as training datasets for comprehensive 
indication prediction.

For drug–target interactions, we integrate 3 cat-
egories of macromolecules (proteins, miRNAs and 
lncRNAs) as drug targets. We obtain drug–protein 
interactions from DrugBank [48], a freely available web 
resource containing detailed information about drugs, 
their mechanisms, their interactions and their targets. 
We only select small molecule drugs and approved 
targets in DrugBank in our study. We download 
drug–miRNA interactions and drug–lncRNA interac-
tions from SM2miR [49] and D-lnc [50], respectively. 
The two databases separately provide comprehensive 
repositories to detect the modification of drugs on 
miRNA and lncRNA expression. We restrict the spe-
cies to Homo sapiens in both databases. We do not take 
inferred results in D-lnc for consideration.

Drug-disease associations are received from repoDB 
[51], a database consisting of approved and failed drugs 
and their indications. We only keep the approved drug-
indication pairs in the database in our datasets.

Method description
Suppose that we have a set of m drugs with p molecular 
target features and q disease features. We denote each 
drug by a target feature vector t = (t1, t2, t3, … tp)T and 
by a disease feature vector d = (d1, d2, d3, … dq)T, where 
ti (or dj) is represented for the presence or absence of a 
target (or a disease) by 1 or 0, respectively.

Consider two linear combinations for targets and 
diseases as ui = αT ti and vi = βTdi(i = 1, 2, 3, …, m), 
where α = (α1, α2, α3, … αp)T and β = (β1, β2, β3, … 
βq)Tare weight vectors. We apply canonical correlation 
analysis [52] to find weight vectors α and β which maxi-
mize the following correlation coefficient:

Let X denote an m × p matrix and Y denote an m × q 
matrix. Then the maximization problem can be for-
mally rewritten as follows:

We refer to it as ordinary canonical correlation analy-
sis (OCCA). OCCA usually results in vectors α and β 
with many non-zero elements. To impose sparsity on α 
and β, we choose to add penalties to (2) like reference 
[53–55] and the maximization problem is considered 
as:

where c1 and c2 are parameters to control the sparsity. 
We refer to this as sparse canonical correlation analysis 
(SCCA). We apply a strategy of penalized matrix decom-
position (PMD) [56] to the matrix Z=XTY  to obtain the 
weight vectors α and β.

To receive multiple canonical variates, we use a defla-
tion manipulation iteratively as follows:

where αk and β
k
 are the weight vectors, and dk is the sin-

gular value obtained in each iteration step. We choose 
targets and diseases in the k pairs of weight vectors with 
the highest values as correlated sets.

To predict new indications for a drug with a known 
target vector xnew, we compute the scores of ynew by 
combining the k pairs of weight vectors according to 
the following equation:

(1)

ρ = corr(u, v) =
∑m

i=1 α
T ti · βTdi

√

∑m
i=1

(

αT ti
)2
√

∑m
i=1

(

βTdi
)2

(2)
max imize{αTXTYβ} subject to �α�22 ≤ 1 �β�22 ≤ 1.

(3)

max imize
{

αTXTYβ

}

subject to �α�22 ≤ 1, �β�22 ≤ 1, �α�1 ≤ c1
√
p �β�1 ≤ c2

√
q

(4)Zk+1 = Zk − dkαkβ
T
k
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The elements in ynew with the highest scores are chosen 
as the predicted indications for the drug. This prediction 
strategy was used in previous studies [53, 54]. The work-
flow of our method is depicted in Fig. 2.

Evaluation metrics
In order to test the prediction performance of our 
method, we implement 10-fold cross-validations on 
the drugs. We split the whole drugs into 10 subsets of 
roughly equal sizes, and each subset is used in turn as a 
test set. We train our method on the remaining 9 sub-
sets. We prioritize the inferred drug-disease associations 
according to the prediction scores (see Eq.  (5)). Setting 
different thresholds, true positive rate (TPR) and false 
positive rate (FPR) are calculated to plot ROC curves. 
Area under ROC curve (AUC) values are computed for 
performance evaluation. To obtain robust results, we 
repeated the cross-validation experiments 10 times.

Moreover, we comprehensively predict novel drug-
disease associations for drug repositioning for the drugs 
not included in the benchmark datasets. We analyse the 
top-ranked results by searching evidence from the pub-
lic database CTD [32]. Note we only choose curated 
records of drug indications in this database for prediction 
confirmation.

(5)ynew =
k

∑

i=1

βiρiα
T
i xnew
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